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Optimal control theory (OCT) applied to driving molecular systems by means of femtosecond pulses is now
a mature area, but many of its intricacies are as yet unexplored. As a numerical tool, the many variations on
the basic method differ not only in computer efficiency but in the type of solutions obtained. In this paper
we survey this diversity, focusing on the use of multiphoton IR laser excitation to control either (1) the state
selectivity or (2) the photodissociation in a 1D Morse potential. We compare two distinct algorithms, the
Krotov method and the gradient method. The former method generates large changes in the field at each
iteration, while the latter does not. As a result, the Krotov method virtually always leads to pulses that are
very different from the initial guess, while with the gradient method this is not always the case. We then
analyze the effect of changing the final time,T, and find that it also can have a profound effect on the nature
of the optimal solutions. Finally, we compare the solutions obtained using two different projectors to describe
the bond-breaking process: a coordinate projector and a projector over scattering states. Again we observe
that the optimal pulses and the dynamics they generate are markedly different in the two cases. This ambiguity
in the definition of the optimal pulses may be viewed as a shortcoming of the approach, or alternatively it
may be viewed as giving the method extra flexibility.

I. Introduction

In the last few years great progress has been made, both
experimentally and theoretically, in observing and controlling
molecular motion. Using femtosecond laser fields, it is possible
to control both the time delay1 and the relative phase between
pump and probe pulses2 to clock chemical reactions and to probe
the detailed evolution of wavepacket amplitude. With newly
developed pulse-shaping techniques,3,4 it has become possible
to control both the amplitude and phase of femtosecond pulses
at each component frequency and to update at a high repetition
rate. Very recently there have been reports of successful control
in simple systems5,6 using both time-dependent and time-
independent mechanisms.
An outstanding goal of this effort at molecular control is to

learn to use laser light to selectively break chemical bonds. Many
attempts in the 1960s to use strong fields/multiphoton excitation
in the IR to dissociate diatomics were unsuccessful. In small
molecules, with a low density of states, it was found that with
the available field strengths it was not possible to overcome
the anharmonicity in the potential and to reach dissociation. In
larger molecules, although the density of states was much higher,
intramolecular vibrational energy redistribution (IVR) was so
fast that the dissociation fragments were statistical. Starting in
the mid-1980s several imaginative schemes were proposed to
produce high vibrational excitation/dissociation in diatomics at
moderate field strengths. Paramonov and co-workers7 devel-
oped a scheme to produce vibrational excitation using a
fundamental frequency with satellite bands. Bandrauk8 showed
how a properly matched chirped excitation could lead to high
vibrational excitation and significant amounts of dissociation.
Rabitz9 and co-workers applied techniques of optimal control

theory to this problem and also found successful preparation of
highly excited vibrational states.
In this paper, we reexamine the use of OCT for selective

excitation in molecules. Although the use of OCT for control-
ling molecular motion is now well established and illustrations
in the literature abound, there are still many aspects of its use
that are not completely understood. As a numerical tool, the
many variations possible differ not only in computer efficiency
but in the type of solutions obtained. In this paper we survey
this diversity, focusing on the use of multiphoton IR laser
excitation to control either (1) the state selectivity or (2) the
photodissociation in a 1D Morse potential. We compare two
distinct algorithms, the Krotov method (KM) and the gradient
method (GM). The former produces large changes in the field
at each iteration, and hence has a propensity to generate optimal
fields that are dramatically different from the initial guess. The
latter makes comparatively small changes at each iteration and
often the optimal field will be close in function space to the
initial guess. Hence, the optimal fields obtained by the two
methods may differ significantly. In addition, we analyze the
effect of changing the final timeT, which is a parameter in the
optimization calculation. We find for different values ofT
dramatically different forms of the optimal field: for larger
values ofT the mechanism tends to be direct single-photon
excitation to the target state, while for smaller values ofT the
mechanism is multiphoton excitation. Finally, we compare the
optimal fields obtained using two different definitions of the
projector to describe the bond-breaking process: a coordinate
projector and a projector over scattering states. Again we
observe that the optimal pulses and the dynamics they generate
differ significantly, in a way that can be rationalized clearly.
Although not shown in the paper, we use the Husimi

representation to analyze the time-frequency structure of the
pulses. We find that all the pulses generated here consist of a
time-independent electric field (dc component) along with
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Gaussian-shaped pulses of different colors, working essentially
at the same time.
The paper is organized as follows. In section 2 we briefly

describe the OCT equations arising from a full variational
treatment,9 and compare the GM and KM approaches. In
section 3 we introduce the specific form for the Hamiltonian
of the system under study. In section 4.1 we give the results
of the numerical comparison of the methods, analyzing the
distinct features of the pulses and striving to understand the
physical mechanisms underlying the driven dynamics. In
section 4.2 the effect of changing the final time is discussed,
while in section 4.3 the effect of changing the dissociation
projector is addressed. Section 5 is a Conclusion.

II. Methodology

In this section we briefly review Krotov's methodology and
compare it with the more usual GM. To facilitate the
comparison, we will adopt a unified nomenclature that follows
closely that used in refs 9-11.
We start by defining the pieces that compose the functional

Jwe want to maximize. First, we define the desired final state
at a specified timeT in terms of the expectation value of a
projector,

where|ψ(T)〉 is the system wave function at the final time and
|O〉 the target state. This expectation value is the probability
of being found in the desired state at timeT, and we will refer
to it as the objective functional. It is a functional in that it
depends on the electric field at all earlier times.
To avoid the singularity of the equations, we add a term to

the functional that depends explicitly on the fieldε(t) to second
order. A physically meaningful choice is to constrain the energy
of the field by penalizing its intensity11 in the form

whereλ is a positive number that works as a penalty. Summing
up the pieces, we have for the functional

Now we use a Lagrange multiplier technique to remove the
dependence of the objective functional on the dynamical
equations that govern the wavepacket evolution. This is done
by defining a Lagrange multiplier function,ø(t), which multiplies
the TDSE and generates the unconstrained functionalJh. Fol-
lowing Krotov and Feldman,12we then split the time-dependent
and time-independent parts of the functional and maximize them
independently, arriving at the following formula.11

with

where c.c. stands for the complex conjugate and the dot
represents a time derivative.
As in the usual variational procedure, we take now the

differential of the functional with respect to variations in the
unconstrained functions,|ψ(T)〉, |ψ(t)〉, andε(t), up to first order,
arriving at the set of equations

The symbolI stands for the imaginary part. Equation 8
defines the equation of motion for|ø(t)〉, which is seen to be
identical to the TDSE forψ. The boundary conditions forø
are specified at thefinal time, according to eq 7. The physical
interpretation of this equation is thatø(T) is the part ofψ that
has reached the objective.10 The TDSE for both|ψ(t)〉 and|ø(t)〉
are solved numerically using the split-operator algorithm with
the Fourier grid method. The last equation, eq 9, is an equation
for the optimal pulse. It is an implicit equation in the sense
that the bra and ket themselves depend on the field, and therefore
this equation needs to be solved iteratively. In GM we consider
the functional derivative as a gradient.

and makeεk+1 ) εk + R∇εR, whereR is a parameter of line
search and the subindexk refers to the iterative process. Instead
of the gradient we could follow the conjugate gradient direction
of the functional derivative with respect to the field, as in the
conjugate gradient line-search method (CGM).
In contrast, in KM we do not assume infinitesimal steps, but

take instead finite increments of the functions at each iteration.
Following the derivation of Tannor et al.,11 a specific form for
the auxiliary function and optimal field is assumed in order to
ensure that the increment in the functional is positive at each
iteration. For the final time part,

which is exactly the result obtained using the GM. For the time-
dependent part, defining

we have

which is a quadratic form in∆ε that takes a maximum, positive
value for

〈O(T)〉 ) 〈ψ(T)|O〉〈O|ψ(T)〉 (1)

λ∫0Tdt ε2(t) (2)

J) 〈O(T)〉 -∫0Tdt (λε2(t)) (3)

Jh ) G+∫0TR(t) dt (4)

G) 〈O(T)〉 - (〈ø(T)|ψ(T)〉 + c.c.)|0T (5)

R(t) ) - λε2(t) + (〈ø̆(t)|ψ(t)〉 + 〈ø(t)|H({ε(t)})ip |ψ(t)〉 +

c.c.) (6)

|ø(T)〉 ) |O〉〈O|ψ(T)〉 (7)

|ø̆(t)〉 ) H
ip
|ø(t)〉 (8)

ε(t) ) I(〈ø(t)| µλp|ψ(t)〉) (9)

δR
δε(t)
≡ ∇εR) 2I(〈ø(t)| µλp|ψ(t)〉) - 2λε(t) (10)

∆G) G(ψ(T) + ∆ψ(T)) - G(ψ(T)) )
〈∆ψ(T)|O〉〈O|∆ψ(T)〉 g 0 if |ø(T)〉 ) |O〉〈O|ψ(T)〉 (11)

∆R) R(ψ(t) + ∆ψ(t), ε(t) + ∆ε(t)) - R(ψ(t) +
∆ψ(t), ε(t)) + R(ψ(t) + ∆ψ(t), ε(t)) - R(ψ(t), ε(t)) )

∆R1(t) + ∆R2(t) (12)

∆R2(t) ) 0 if 〈ø̆(t)| ) -〈ø|H
ip

(13)

∆R1(t) ) -λ(∆ε)2 - 2λε∆ε + 2
p

∆εI(〈ø(t)|µ|ψ(t) +

∆ψ(t)〉) (14)

∆ε(t) ) I(〈ø(t)| µλp|ψ(t) + ∆ψ(t)〉) - ε(t) (15)
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When we collect all the terms into which we partitioned the
functional and perform the time integral ofR(t), we find that
∆Jh g 0. The equality is attained only at the maximum, when
we recover the forms of eqs 8-10.
From the variation in the field, eq 15, we calculate the new

field εk+1(t) ) εk(t) + ∆εk+1(t), which according to formula 15
above does not depend on the former value,εk. Equation 15
resembles that for the variationally found optimal pulse, eq 9,
except here the improved pulseεk+1 is used to propagate the
system wave function (ψ(t) + ∆ψ(t)〉), but not the auxiliary
wave function, which is still propagated using the former version
of the pulseεk. This procedure, where the pulse is optimized
at each time step, is called immediate feedback control or local
optimization.
From a different perspective, we observe that the Krotov

method considers variations of the functionalJh up to second
order in the field, and therefore we can calculate analytically
the value of ∆ε(t) which yields a maximum. Thus, the
“empirical” test of the line-search approach is avoided in the
Krotov method.11

From a computational point of view, the KM requires the
following operations at each iteration: one backward propaga-
tion of |ø(t)〉 and two forward propagations, one for|ø(t)〉 driven
by the old pulse and one for|ψ(t)〉 driven by the new pulse. In
GM we need two backwards propagations, one for|ø(t)〉 and
for ψ(t)〉, andn forward propagations, wheren is the number
of steps required to find the maximum value of the functional
with respect to the field in the direction of its gradient.
Therefore, compared with GM, the Krotov method introduces
immediate feedback and requires fewer propagations per itera-
tion.

III. The System

As an illustrative example, we will consider a simple 1D
system, a Morse potential with seven bound eigenstates. The
Hamiltonian for the system is

with parametersD ) 0.386 eV (3342.4 cm-1 ), µ ) 1 amu,x0
) 2.1 Å, andâ ) 2.1 Å-1. For the discussion of the results
below, we give here the characteristic frequencies of the system,
ωif, corresponding to the energy gaps between the first four
levels: ω01 ) 850 cm-1, ω02 ) 1550 cm-1, ω03 ) 2100 cm-1,
andω04 ) 2400 cm-1.
We assume a dipole moment coupling with the radiation, and

we take the dipole function to have the form

The dipole function coordinate will effectively induce an
overall shift of the energy levels at large values ofx to higher
or lower values, depending on the sign of the field amplitude.
The sign of the interaction is chosen so that a negative value of
the dc field will cause a decrease in the dissociation barrier.
We discard all solutions with optimal field intensities greater
than 1013W/cm2 (i.e., we change the penalty function and start
over with the initial guess) since this is above the Keldysh limit
and is assumed to lead to atomic ionization.13

IV. Results and Discussion

A. Comparison of KM and GM Results. Our goal here
will be to compare the Krotov method (KM) and gradient

methods (GM), analyzing both the optimal pulses that they
generate and the numerical effort they require. For this part of
the study we focus on selective excitation of the fourth Morse
eigenstate (labeled|3〉), starting from the ground state (labeled
|0〉).
In Figure 1, the yield as a function of iteration number is

plotted for four different test cases. Three of the tests represent
distinct methodssKrotov (KM), gradient line-search method
(GM), and conjugate gradient line-search method (CGM)swhich
were all started with the same initial guess, a Gaussian-shaped
pulse with carrier frequency matching the energy gap between
states|0〉 and |3〉 (ω03). The fourth test (GM2) starts from a
Gaussian-shaped pulse whose parameters have been preopti-
mized. From the plot we observe that the final yield obtained
by the Krotov method (0.62) is clearly better than that obtained
with the other methods (the best of the others, GM, gives a
final yield of 0.49). In this example CGM rises faster than GM,
although GM attains a higher ultimate value. The comparison
of GM2 with GM suggests that a very efficient guess pulse
may lead to fast convergence, but is not guaranteed to attain
the highest yield. Both these features are consequences of the
initial guess in GM2 being close in function space to a locally
optimal pulse. This is the opposite extreme for the KM result,
where the initial guess is quite distant in function space from
the optimal pulse. In terms of numerical effort there is an even
larger advantage to KM, which requires only three wavepacket
propagations per iteration, as compared with gradient-based
methods, which require many more, due to the line search
necessary.
In Figure 2 we analyze the features of the optimal pulses

obtained with the different methodologies. The frequency
spectrum provides a good measure of the distance between the
pulses in the functional space. Recall that the 0f 3 transition
frequency is 2100 cm-1. Therefore, we observe that the GM2
solution just makes use of the direct transition, while, at the
opposite extreme, the KM pulse has no component of direct
transition. GM is in a middle position, with some component
of direct and indirect transitions. The CGM pulse is essentially
identical to the GM pulse and is not shown.
To show schematically how the optimal pulses work, we use

the energy level diagram for the Morse potential. Figure 3a
shows schematically the mechanism exploited by KM. It
consists of the coherent superposition of two pathways, each
consisting of a two-photon transition. Figure 3b shows sche-
matically the mechanism used by GM. It involves the coherent
superposition of three pathways, one being the single-photon
direct transition to the final state and the other pathways again

Figure 1. Probability to select the target staten ) 3 at different
iterations for Krotov and gradient methods. The final time is 100 fs.
The nomenclature is explained in the text.

H ) - p2

2µ
∂
2

∂x2
+ D (1- exp(-â∆x))2 (16)

µ ) 1- exp(-â(x- x0)) (17)
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being two-photon, but now with one of these pathways
employing a virtual transition through the dissociative con-
tinuum. We will refer to this scenario as three-color, because
it employs three very different frequencies. Figure 3c shows
schematically the mechanism employed by CGM. It is again
the single-photon, direct pathway to the final state.
To connect the pictures above and the energy levels of the

bare Morse oscillator, it is necessary to take into account the
zero-frequency components of the fields, which induce a dc
Stark shift. This shift is especially important in the KM solution,
where the yield drops to less than one-third (0.19) after filtering
this component. The KM solution can be analyzed as a dc
component plus a broad band ranging from very low frequencies
to almost dissociation and centered around 900 cm-1 and plus
other strong bands at frequencies higher than the continuum of
dissociation. The strong and negative dc component (-1.8×
107 V/cm) causes a lowering in the energy levels of the potential.
We have checked this by diagonalizing the Hamiltonian formed
by the potential and the time-independent component of the field
coupled by the dipole moment. The first three Stark-shifted
fundamental frequencies areω01) 680 cm-1,ω02) 1200 cm-1,
andω03 ) 1600 cm-1. The lowering of energy levels implies
that the broad spectral band around 900 cm-1 overlaps the direct
transitionsω01, ω02, ω13, andω23, shown in Figure 3a. The
signature of these transitions is seen in the time dependence of
the transition probabilities, shown in Figure 4. The system
evolution can be described as sequential, proceeding from|0〉
f |1〉 f |2〉 f |3〉. To test the importance of direct transitions
from |0〉 f |3〉, the higher frequencies in the spectrum were
filtered; the final yield remained almost constant. This implies
that the strong band centered around 3000 cm-1 is almost not

contributing to the system evolution. The presence of a great
number of photons not being used by the optimal field can be
explained because the optimization did not penalize strongly
the energy fluency of the pulses.
The mechanism of the GM pulse is somewhat more compli-

cated. The direct transition due to the band centered above 2000
cm-1 yields around 40% of the objective, the rest being due to
the joint effect of the dc component and of the two bands
centered at 1300 and 3300 cm-1. The dc component (5.0×
106 V cm-1) this timeraisesthe energy levels (and reduces the
strong anharmonicity), allowing the first of the bands to match
the energy gap between|0〉 and |1〉 within the energy-time
resolution of our experiment (the Stark-shifted fundamental
frequency for theω01 transition is now 900 cm-1 andω13 is
approximately 1300 cm-1). Subsequent absorption generates
the transition from|1〉 f |3〉. This route is borne out by the
time development of the populations in Figure 4. Nevertheless,
the band centered at higher wavelength also plays an important
role: filtering out the high-frequency component reduces the

Figure 2. Optimal pulses in time (left) and frequency (right) for KM, GM, and GM2 cases. The direct transition frequency,ω03, is equal to 2100
cm-1.

Figure 3. Level diagrams illustrating the main processes participating
in the dynamics driven by the KM (a), GM (b), and GM2 (c) pulses.
The energy levels represent roughly the Stark-shifted eigenvalues of
the Morse potential.

Figure 4. Population histories for the main states involved in the
dynamic evolution, for KM (upper) and GM (lower) cases. The target
state isn ) 3.
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yield from 0.49 to 0.34. The high-frequency contribution works
by a stimulated Raman process in which there is a transition to
a virtual state in the continuum, followed by a downward
transition to level|3〉. That this stimulated process is at work
is consistent with the fact that the energy difference between
the high-frequency band and the band at 3300 cm-1 overlaps
ω03. Therefore, the GM mechanism employs three colors, in
addition to the dc component.
Finally, for the GM2 case, only the direct transition contrib-

utes to the population in the target state.
B. Effect of Changing the Final Time. Having shown that

the choice of optimization method can dramatically affect the
nature of the optimal pulse, we now show that relatively benign
parameters in the definition of the objective can also completely
change the nature of the optimal pulse. To keep the size of the
study manageable, below we will use only the Krotov meth-
odology. The first parameter we investigate is the choice of
final time, T, at which the yield is measured. We choose as
our target staten ) 4. Note that there is a three-photon
resonance in the system, sinceω04) 3ω01, and therefore by
choosing the objective asn ) 4 we put into competition the
single-photon and the multiphoton routes. As will be seen
below, the relative contributions of the two routes are a strong
function of pulse duration and therefore of the optimization
parameter,T.
In Table 1 we show the yields obtained for time durationsT

) 150, 250, and 400 fs. It is clear that larger values ofT lead
to larger yields. This difference is not only quantitative but it
is qualitative, in the sense that there is a changeover in
mechanism as the final time is increased. As a first indication
of this changeover in mechanism, we show in Table 1 the result
of applying three different spectral filters to the pulses: (i)
filtering the dc, (ii) filtering all low-frequency components (LF)
(including the dc andω01), and (iii) filtering the high-frequency
components (HF) (includingω04 and all frequencies above direct
photodissociation). Since LF and HF give almost a complete
partitioning of the pulse spectrum, we associate the yield
obtained using the LF with the single-photon route to the
objective, while we associate the HF yield with the multiphoton
contribution. Moreover, we can interpret the difference in yield
between the full optimal pulse and the sum of LF and HF yields
as being due to quantum interference between the two routes.
Figure 5 shows the optimal pulses obtained, both in time and

frequency, for different choices ofT. The pulses associated
with the different values ofT each work by a different
mechanism, as shown schematically in Figure 6. ForT ) 150
fs the main features of the optimal pulse in the frequency domain
are a very strong dc component (-2.2× 107 V cm-1 ) and two
wide bands centered aroundω01 andω02 (where the frequencies
refer to intervals between the dc Stark-shifted Morse eigenstates,
not the bare eigenstates). These frequency components are
responsible for simultaneous transitions between the state|0〉
and the states|1〉 and|2〉, as seen in Figure 6a. Subsequently,

the transitions|1〉 f |4〉 and|2〉 f |4〉 are induced to reach the
final target. Note that the frequency components conspire to
bypass level|3〉. The resonance between the field frequencies
and these transition intervals again requires taking into account
the dc Stark shift. It is striking that the 150 fs solution does
not exploit either the one-photon or the three-photon resonances,
but uses two superposing sets of two-photon transitions.
ForT ) 250 fs the dc component is low and positive (5.9×

106 V/cm), thereby reducing the anharmonicity of the system.
In addition, there are frequency components at|0〉 f |1〉, |0〉
f |2〉, |0〉 f |3〉, etc. However, by far the most important of
these frequencies is the|0〉 f |1〉. The dc component acts to
enhance the resonance of the three-photon pathway|0〉 f |1〉
f |2〉 f |4〉, so that only the|0〉 f |1〉 frequency is necessary
for the process. (Note that, although the concept of a resonance
condition is of limited utility for extremely short times, by times
on the order ofT ) 250 fs andT ) 400 fs the resonance
condition plays a significant role.) Filtering the dc component
eliminates the resonance with the intermediate state|2〉, reducing
the yield to less than one-half. In contrast, the direct single-
photon route is responsible for less than 10% of the total yield.
Finally, in the caseT) 400 fs, the direct single-photon route

is responsible for 60% of the yield, while all the multiphoton
routes combined are responsible for only 40% of the yield. For
comparison, note that even a simple CW pulse can transfer 72%
of the system’s population from|0〉 f |4〉.
Additional support for this changeover in mechanism asT is

increased is shown in Figure 7, where the transition from
simultaneous multiphoton pathways (T ) 150 fs) to a single
sequential multiphoton (T ) 250 fs) to a direct transition (T )
400 fs) is seen clearly in the behavior of the population histories.
C. Effect of Changing the Functional Form. The focus

of the study will now turn to multiphoton dissociation dynamics.
In the spirit of the present methodological survey, we will
explore the effect on the optimal pulses of the choice of the
projector that is used to define dissociation. We have devised

TABLE 1: Probability of Reaching the n ) 4 Morse
Eigenstate at Different Final Times (in Percent)a

150 fs 250 fs 400 fs

optimal pulse 67.0 81.6 85.8
dc filter 25.7 38.0 62.2
low-freq filter 1.0 5.1 54.3
high-freq filter 52.2 73.8 33.5

a The yield using the optimal pulse is compared with that obtained
after a dc filter, a low-frequency filter (including dc and all frequencies
below the direct transition|0〉 f |4〉), and a high-frequency filter
(including the direct transition and above).

Figure 5. Optimal pulses in frequency domain for staten) 4 selection
at different final times (T). The frequency for the direct transition is
ω04 ) 2400 cm-1.

Figure 6. Level diagrams illustrating the main processes participating
in theT ) 150 fs (a),T ) 250 fs (b), andT ) 400 fs (c) cases. The
energy levels correspond roughly to the Stark-shifted eigenvalues of
the Morse potential.
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two different projectors that in principle represent the system
bond breaking. The first is a scattering states projector, which
we callPs, mathematically defined as

and the second is an asymptotic coordinate projector (Px) defined
as

For numerical reasons, when applyingPx, we filter negative
momentum components, although this accounts for only a small
percentage of the amplitude. The final time used in these
calculations is 100 fs, and the initial guess pulse is Gaussian-
shaped. The initial guess produces 27.5% dissociation, defined

using the scattering projector. We use KM for the subsequent
optimization.
The optimal pulse obtained using the scattering projector gives

a value of the objective,JPs, of 0.77 after 12 iterations, while
the optimal pulse obtained using the coordinate projector gives
a value of the objective,JPx, of 0.85 after only 6 iterations. The
main features of thePs pulse are a low negative dc and a wide
band peaking atω02 andω03. The main components of thePx

pulse are a high positive dc and a band centered atω01. Figure
8 shows the optimal pulses in the time and frequency domains.
Note that in thePx case the majority of the photons are
concentrated in a very short time interval around 40 fs. (Figure
8, bottom left). The strange features of the shape in this interval
are due to the higher frequency components of the field.
Filtering these frequencies (Figure 8, middle left) has almost
no effect on the dissociation yield. The part of the pulse which
remains after filtering essentially works as a hammer, synchro-
nized with the arrival of the wavepacket at the inner turning
point of the potential. Evidence for this mechanism will be
given below.
As before, we analyze through time-dependent observables

the mechanism by which the pulses act on the system. In Figure
9 we show the population histories for the most important states.
In thePs case, we see evidence for a two-step process: a first
step in which the photons simultaneously transfer population
to the intermediate excited states|1〉, |2〉, and|3〉 and a second
step (in the last 20 fs) in which the bond is impulsively broken.
In thePx case we have instead only a single impulsive absorption
of energy that transfers population rapidly (in about 10 fs) and
successively to all excited bound states and finally dissociates.
For the photodissociation problem it is fruitful to follow the
wavepacket dynamics in the coordinate frame, as well as in the
eigenstate frame. Figure 10 shows the time evolution of the
wavepackets, for both thePsand thePx cases. We superimpose
the shape of the potential surface to facilitate the view of the
wavepacket oscillating between the inner and the outer wall of
the potential, although the ordinate represents the time and not
the energy expectation value of the system. Indeed, the height
of the potential curve in each plot is scaled to the expectation
value of the energy at the final time.
In both thePs andPx cases the bands are so broad that the

concept of resonance is of limited value in understanding the

Figure 7. Population histories in the optimal dynamics for selecting
then ) 4 state, forT ) 150 fs (upper),T ) 250 fs (middle), andT )
400 fs (lower). The solid line represents the initial state,n ) 0, and
the thicker line the target state,n ) 4. The most representative
intermediate states aren) 1 (dashed line) andn) 2 (dashed-dot line).

Figure 8. Optimal pulses in time (left) and frequency (right) domain for thePs andPx cases. Also shown is the pulse obtained after filtering the
dc component and the above threshold frequencies of thePx pulse (labeledFPx).

Ps≡ 1- ∑i)0
6 |φi〉〈φi| (18)

Px≡ ∫xgxasympdx|x〉〈x| (19)
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mechanisms at work. Nevertheless we can infer from the
position of the main bands in the pulses, together with the energy
expectation value vs time, a rough measure of the number of
photons absorbed and their time of absorption. By correlating
the evolution of the wavepackets in the coordinate representation
with the energy history of the system (see Figure 11), we can
infer not only when the photon is absorbed but also what it is
being used for. In thePs case the bands are blue-shifted relative
to thePx case (see Figure 8). The spectral features around 2000
cm-1 produce a coherent excitation of levels|2〉 and |3〉 via a
one-photon process. A second photon gives the final impulse
during the “collision” with the potential inner wall, as seen in
the left part of Figure 10. In thePx case the spectrum is farther

to the red; however, the final amount of energy absorbed is
higher. Therefore, it is clear that a greater number of photons
are taking part in the photodissociation process. In fact, we
estimate that more than five photons are absorbed right before,
during, and after the collision of the wavepacket with the inner
wall of the Morse potential (Figures 9 lower and 10 right).
Although not shown in Figure 8, there are high-frequency

components in the spectrum that are clearly above the threshold
for direct dissociation. These highly energetic photons give a
strong impulse to the wavepacket, creating some high-
momentum components which reach the asymptotic region
within timeT. If these high-frequency components are filtered,
the objective drops from 89% to 67%. Recall that in thePx

case the objective is defined in terms of the portion of the
wavepacket that crosses the asymptotic coordinate in timeT.
Thus, this drop is to some extent an artifact of the definition of
the objective: if the same pulse is used but the objective is
defined in terms of projection onto the scattering states, there
is almost no drop in yield.
The role of the dc component is very different in thePs and

Px cases. In thePs case, the dc component is low and negative
(-3.0× 106 V/cm), and therefore it reduces the dissociation
energy and increases the anharmonicity of the potential. This
in turn increases the complexity of the nodal structure of the
wavepacket, which ultimately reflects itself in a more compli-
cated momentum distribution of the fragments (see Figure 12).
In the Px case, the dc component is high and positive (2.3×
107 V/cm), so it reduces the wavepacket distortion and more
importantly it reduces the time for the first collision of the
wavepacket with the inner turning point of the Morse potential.
This reduction in time, in turn, reduces the time necessary for
the wavepacket to reach the asymptotic region, increasing the
objective. If the dc component is filtered, the asymptotic
amplitude decreases significantly, not only because the wave-
packet requires more time to reach the inner turning point of
the potential but also because it is slightly desynchronized, when
it reaches the inner wall of the potential, from the most intense
part of the pulse, at 40 fs. The second effect will also lead to
a significant decrease in the ultimate dissociation yield (i.e.,
the overlap with the scattering states), although the first effect
will not.
In thePx optimal dynamics, the wavepacket stays compact

until after dissociating, and thus the final momentum distribution

Figure 9. Population histories for the main states implied in the
dynamic evolution, forPs (upper) andPx (lower) cases.

Figure 10. Time evolution of the wavepackets for thePs (left) andPx (right) cases. We superimpose the potential curve to facilitate the view of
the dynamics, but the ordinate represents the time coordinate and not the expectation energy of the system. For more explanations see the text.
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is structureless; this is in marked contrast with thePs case, where
the momentum distribution is highly structured. Eliminating
the dc component of thePx excitation increases the effective
anharmonicity and leads to a structured momentum distribution
as in thePs case. Moreover, thePx momentum distribution is
centered at higher values than thePs case, as a result of the
high-frequency components of the excitation and the synchro-
nization of the pulse with the collision at the inner wall of the
potential discussed above. Eliminating the high-frequency
components (above direct dissociation) shifts the momentum
distribution to lower values but does not effect the nodal
structure (see Figure 12).

In closing this section on numerical results, we make some
general observations on the optimal pulses we obtained. In all
our simulations the underlying structures of the optimal pulses
are more easily interpreted in the frequency domain than in the
time domain. In all situations explored we can describe our
pulses as a sum of a time-independent electric field and a set
of Gaussian-shaped pulses (ranging from one to three in the
most complex case) of different colors. Husimi plots of the
pulses (not shown) indicate that the pulses are unchirped and
that the different colors operate essentially at the same time.
Of course, our findings may be particular to the model chosen,

which consists of a shallow Morse potential, as well as our
choice of dipole function.

V. Summary and Conclusions

Optimal control methods have become a popular tool in
quantum dynamics calculations, and we expect their use to
eventually become routine in the world of experimental laser
chemistry. In this article we have attempted to show that OCT
is not a black box that provides just one answer to a given
problem, but on the contrary, by manipulating the different
parameters and definitions available in OCT, a variety of
“optimal” pulses can be devised, depending on the needs or
requirements of the experimental designs. Moreover, even when
the experimental realization of these pulses is not completely
possible, the understanding of the underlying structure of the
optimal field may provide insight into the physical processes
that guide the system to the desired objective.
We tested here the effect of (1) the choice of optimization

methodology, (2) the choice of final time, and (3) the choice of
the objective functional chosen on the type of solutions obtained
in OCT. In a future paper we plan to discuss the effect on the
optimal pulses of changing the constraints on a small set of
experimentally controlled parameters.14 We have seen that KM
is less time consuming than GM because it makes possible large
changes in the electric field at successive iterations and because
it requires fewer operations per iteration. This ability to search
for distant solutions in the space of the pulses makes KM
especially powerful when the initially guessed pulse is far from
the optimal one, i.e., when intuition fails. However, more
important in the context of the present study is that the GM
methods can get trapped near the initial guess, while the KM
method quickly escapes from the region of the initial guess.
In the selective excitation of Morse bound states we have

seen a clear changeover in mechanism as the definition of the
final timeT is changed. ForT< 400 fs we found a preference
for multiphoton (two or three photon) routes, while ifT g 400
fs the mechanism changes to single-photon excitation.
In the photodissociation problem we have tested how the

functional form of the objective affects the solutions. We
observed that when we use a coordinate projector (Px), the
optimal pulse forces a vertical plus horizontal displacement of
the wave function and therefore favors faster energy absorption
and hotter translational distributions. In contrast, using a
scattering projector (Ps) the driven wavepacket experiences only
a vertical displacement (the asymptotic part of the wavepacket
at T ) 100 fs is less than 6%). Moreover, due to the sign of
the dc Stark shift, the momentum distribution is wider and
exhibits nodal structure. ThePs dissociation case is more
“economic” in that it requires less intense fields and fewer
photons are absorbed. It is also physically more meaningful,
since amplitude in these states will reach dissociation, even if
they are not there at the final timeT. However, the use of a
scattering projector is more cumbersome computationally, since
the system-bound states need to be calculated.
Finally, we have observed that by changing the high-

frequency or the dc components of the optimal pulses we can
change the translational distribution of the fragments. We
therefore expect that by manipulating these components of the
pulses some degree of momentum selectivity can be achieved.
This idea is currently being tested.
The present study therefore indicates that the “optimal”

solution is largely in the eye of the beholder, i.e., in the way
the researcher defines the parameters of the objective. More-
over, there are other important parameters, e.g., robustness,

Figure 11. Expectation value of the system energy as a function of
time for thePs andPx cases. The high absorption of energy in thePx

case can be reduced by filtering the high-frequency components of the
field (as shown in the case labeled HF) and also the dc components of
the field (shown in the case labeled dc).

Figure 12. Final momentum distribution for thePs andPx cases. SP
is shifted to lower values of momentum and exhibits nodal structure
in comparison withPx. Filtering the high-frequency components that
are present inPx induces a shift to lower values of momentum in the
momentum distribution of the fragments at final time. This is shown
in the curve labeledPx (HF).
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which we have not even been able to touch on in this study.
The ambiguity in the definition of optimal solutions may be
viewed as a shortcoming of the approach, but alternatively it
may be viewed as giving the method extra flexibility. Although
the present study was for a simple model potential, we believe
that the flexibility in the definition of the optimal solution applies
also to more complex systems.
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